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BY 
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ABSTRACT 

A self-contained account is given in an efficient formalism of rigged immersions 
of one manifold-with-connection in another, leading to the analogues of the 
Gauss, Codazzi and Ricci equations discovered by Schouten. The equations 
expressing their interdependence are then derived and it is shown that in 
general one of the two sets of "Codazzi" equations is a consequence of the other 
set and the Gauss and Ricci equations. The formalism is specialised to the 
Riemannian case, where it is shown that, for large codimension (specific limits 
being given), all but n components of the Codazzi equations are determined by 
the other equations. A local theorem on the existence of rigged immersions is 
proved. 

O. Introduction 

The in te rdependence  of the Gauss,  Codazzi  and Ricci equat ions  for isometric 

immersions has been studied by Blum [1] and others,  with emphasis  on cases 

where the embedding  has low codimension.  Our  aim here is to extend this work  

to higher codimension (with emphasis  on the generic case) and to rigged 

immersions of manifolds having only a connect ion.  As  far as I am aware,  the 

only available t rea tments  of the rigged situation are found in Schouten  [4] 

(pp. 265-9) and the references cited therein,  whose nota t ion is ra ther  cumber-  

some for our  purposes.  We shall therefore  develop in sections 1 and 2 the 

formalism for rigged immersions in a self-contained presentat ion,  enabling us to 

give in section 3 a very clear proof  of the basic equat ions  of Blum on which the 

in te rdependence  is based. Specialisation to the isometric pseudo-Riemann ian  

case is made  in section 4. In section 5 we illustrate the methods  used by proving 

the local existence of a rigged immers ion into flat space for a given manifold with 

a connect ion,  the immers ion having its H61der class as high as is al lowed by the 

H61der class of the curvature.  
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I. Rigged immersions 

To begin with, suppose that an n-manifold M is embedded in an (n + p ) -  

manifold N, so that M can be regarded as a subset of N. All maps, manifolds, 

bundles etc. will be C ". We write the tangent bundles as TM C TN, with 

projections zrM and 7r~, fibres TxM and TxN, and we set TMN:= ~'-d(M)= 
Ux~M TxN. 

Suppose now that at each point x E M there is given a subspace Ex of TxN 
such that T~N = Ex G T~M and such that E = U~ Ex is a smooth subbundle of 

TMN. Slightly modifying Schouten's terminology, we call such a bundle a rigging 
of the embedding M C N. 

If M is merely immersed in N by a map f : M ~ N then we must modify the 

definition to say that a rigging is in this case a vector bundle (E, 7r~) over M and 

a smooth fibre map f : E  ~ TN, linear and injective on the fibres, such that 

~'N o f = f o 7r~ and Tn~)N = f(E~) ~ f ,  (T~M). However,  since we are concerned 

here with the local properties of immersions rigged in this way, we may as well 

suppose f to be an embedding, in the sense that locally we can always regard a 

small enough neighbourhood of M as a subspace of N. 

The structure of a rigged embedding derives from the projections of TxN, for 

x E M, into its parts tangential to M and transverse to M in E. These we write as 

z :TMN~TM and v : T M N ~ E .  

(In the case where N is pseudo-Riemannian and the induced metric on M is 

non-degenerate,  there is a natural rigging with E the normal bundle, when ~" and 

v are the orthogonal projections on the tangent and normal bundles.) 

If N is furnished with a torsion-free linear connection fT, then we can define an 

induced connection on M in the same way as in the pseudo-Riemannian case, 

whether or not the connection is metric or E is normal, by defining 

(1.1) VxY = ~(VxY) 

for all X E TM and vector fields Y defined on M in a neighbourhood of zrM (X) 

(noting that VxY can be defined by extending Y to a neighbourhood in N and is 

independent of the extension chosen). 

To describe the local geometry of the immersion, choose sections E, .  �9 E of 

E that form a basis in each fibre; define also dual 1-foi'ms ~b,..., d~ ~ ,~* N  by 

requiring ~ ( E )  = 3~, ~b(X) = 0 for X E TM. Then v(X)  = d~(X)E and z (X)  = 

X -  v(X), so that (1.1) becomes 
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(1.2) vxY = V x Y  - ~o ((TxY)E 

(X  E TM, Y a vector field on M). Since (~ (Y) = 0, we have 

(1.3) ~o(~TxY) = - ( V x ~ ) ) ( Y ) =  :Be(X, Y), 

say, defining tensors B e analogous to the second fundamental form of 

Riemannian geometry. Thus (1.2) becomes 

(1.4) V x Y  = V• - B"(X,  Y)E.  

An analogous formula for covectors (1-forms) can be written down as follows. 

If ~ E ,~'*M is a 1-form on M, we write q~ for its extension to TMN defined by 

setting q~ (P) = 0 for P E E. Then, for X E TM, 

(VxC~)(Y) = X ( ~ b ( Y ) ) -  q~ (VxY) = X(~b ( Y ) ) -  q~(VxY) = (Vx~b)(r) 

(from (1.4)) and 

( 1 . 5 )  = -  (VxE) = ( X ) )  

say, where fla ( X ) : =  - r ( V x E )  is the shape operator of ordinary differential 

geometry. Combining these, 

(1.6) Vx(k = ~r(~ _ ~ (ft. (X))(& 

Finally, projection onto E defines a connection D in E by 

DxP = v (VxP) (X  E TM, P : M --> E a section). 

The components of D in the basis (E~=I are given by 

( 1 . 7 )  = 

Combining (1.7) and (1.5) gives 

(1.8) VxE = a~(X)E - ~ (X). 

Those properties which can be defined without a metric are, on the whole, 

preserved. In particular 

(1.9) B~(X, Y ) =  B~' (Y ,X)  

follows from the Frobenius relations for the integrability of the distribution 

defined by the $, which implies that V is torsion-free. 
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2. Fundamental equations 

THEOREM 1 (Schouten). The following equations hold (where R, R are the 

Riemann tensors of V, V respectively). 

(2.1) ~ (R (X, Y ) Z )  = g (X, Y ) Z  - B ~ (Y, Z)I2~ (X)  + B ~ (X, Z)I2~ (Y),  

~o(R(X, Y ) Z )  = (VxB~)(Y, Z ) -  (VyB~)(X, Z )  

(2.2) + cr~(X)B 8 ( y, Z )  - tr~( r ) B  8 (X, Z) ,  

(2.3) z (/~ (Y, X ) E )  = (V• 12 8) (Y) - (Vv 12~ ) (X) + tr ~(Y)I2~ (X) - r ~(X)I)~ (Y), 

a~ (/~ (X, Y)E)  = (VxO'~)(Y) - (V ytr ~)(X) + B ~ (Y, 12 8 (X)) 

(2.4) 
- B ~ (X, ~2 8 (Y) )  + o'~(X)cr~(Y) - tr~(Y)o'~(X). 

PROOF (1). These follow from the equations of w exactly as in the Rieman- 

nian case: (2.1) is Gauss'  equation, (2.2) and (2.3) correspond to Codazzi's 

equation and (2.4) is Ricci's equation. Explicitly, (2.1) and (2.2) come from 

rewriting 

/~(X, Y ) Z  = VxVvZ - VvVxZ  

(for [X, Y] = 0) using (1.4), (1.8) and taking tangential and transverse parts; (2.3) 

follows similarly from 

- q~ (/~ (X, Y)( .  )) = VxV~-~ - VyVx~b 

while (2.4) follows on replacing ~ by d~. [] 

The equations can be expressed most succinctly by introducing fields (E)~'=~ 

locally on M forming a basis in each T~M, with dual 1-forms ~b, allowing us to 

define matrices of 1-forms B, 1~, o" with components 

[B]~ '=B~(E, . ) ,  [ n l~= tb (O~( . ) ) ,  [o ']~=o'~.  

The curvature 2-forms are defined as usual by 

[O]j= ~b (R  (. , . ) E )  (i,j = 1 , . . . , n ) ,  
i 

- .  ~to(R( , . )E )  ( a , b = l , .  . , n + p )  

(this last being considered as restricted to TM). 

Then if Z is a vector field on N over M (Z : M ~ TMN) we can decompose Z 

into z ( Z )  + v(Z),  the two parts having components Z M' and Z E~ with respect to 

(E)  and (E). So, for X ~ TM, 
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r  = Cx (ZM'E + z~~  

(2.5) = v,, (ZM'E) + B o (X, ZM' ,E)E 

+ ( r  ~o)E + o ,~ (x ) z~o~  - n~ ( x ) z  Eo 

from (1.8), (1.4). This enables us to give an alternate proof of (2.1)-(2.4). 

PROOF (2). Introduce the matrix notation 

Z =  Z ~ , = ( Z  ),~,, Z~=(Z~~  

for the components of vectors in TMN, and write d for covariant exterior 

differentiation of tensor valued p-forms on M with respect to the connection V 

(treating the Greek indices as labels), with d for covariant exterior differentia- 
tion with respect to V, using all the indices as tensor indices. Then (2.5) becomes 

-.) 
= ^ Z  

o" 

o r  

(2.6) 

where 

(2.7) 

= d z + F A Z  

0 
F =  B 

A second exterior differentiation gives 

-n). 

i.e. 

(2.8) 

where 

0 ^ Z = d2Z = d2Z +die ^ Z - F  ^ dZ  + F  ^ dZ  + F  ^ F ^ Z 

= O *  A Z + F A F A Z + d F ^ Z  

~ ) = O *  + F  A F  + d F  

o*=(~ 
Substituting from (2.7) thus gives 

(2.9) ~ ) = (  O - - n A B  
dB +o" ^B 

The four blocks of this equation are precisely the four equations (2.1)--(2.4). 

- d l " ~ -  ~ A o" / 
d ~ - B  ^ 1 ) , + ~  ^ ~ " 

[] 
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REMARK. Equations (2.1)-(2.4) with/~ = 0 are in fact sufficient conditions for 

the existence of a rigged embedding in R" = N. The proof of this is almost a 

word-for-word repetition of the Riemannian proof (see, for example, Tenenblatt 

[5] for an account that leaves least to the imagination). In fact, the proof is 

slightly simpler in the present case, since the basis fields are not required to 

remain orthonormal. 

3. Interdependence 

The curvature form O of TMN satisfies Bianchi's identity 

(3.1) dO = 0. 

If we note that O has components of type - "  Oh, so that its covariant exterior 
b derivative with respect to any connection-forms toc has components 

d ~ , +  o~ ^ ~ -  6)~ ^ o~g, 

then we see that (2.6) extends to forms of the type of 6) to give, for (3.1), 

(3.2) 0 = d6) = dO + F A 0 - O A F. 

Generalising from the case where F and O arise from a rigged embedding, 

consider a general matrix of 1-forms 

,__(0 -o) 
f .  f~ /  

and a similar matrix of 2-forms 0 satisfying (analogously to (3.2)) 

(3.2') 0 = dO + f A 0 -- 0 A I" 

Associated with f and 0 is the tensor 

(3.3) X : = O - O * - I ^ I - d I =  C2 " 

The components G, C1 and C~, K are the Gauss, Codazzi and Kfihne tensors. 

Equation (2.8) shows that the vanishing of X is the necessary condition for (0, f )  to 
arise from a rigged embedding. 

Exteriorly differentiating (3.3) and using the Bianchi identity dO = 0 (and 

hence dO* = 0) gives 

dX = d O - - d f  A f + f  A d f T O *  A f + f A  O* 

= - - f  A O + O A  f - - d f  A f  + f  Ad f - -O*A f + f  AO* 
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(from (3.2')), i.e., 

(3.4) d X  = X ^ .f  - f A X .  

Thus the components of the embedding equation X = 0 (equivalent to (2.8)) are 

not all independent, since X is constrained by (3.4). It was pointed out by Blum 

[1] in the pseudo-Riemannian case that (3.4) does not involve 0 (except through 

X). Writing out the components in the block-decomposition of (3.4), we have 

(3.5) d G  = C1 A b + to A C2, 

(3.6) dC~ = C~ A ~ -  G A to + to A K ,  

(3.7) MC2 = K A b - b A G - ~ A Cz ,  

(3.8) d K  = K ^ ~ - C 2 ^  to  - b  ^ C ~ - g ^  K .  

Suppose now that (0, [ )  are such that the Gauss and Ricci equations are satisfied, 

i.e. 

(3.9) G = 0; K = O. 

Then (subject still to 0, the putative curvature form, satisfying (3.2')) equations 

(3.5) and (3.8) give the algebraic equations 

(3.10) C1 ^ b + to ^ Cz = 0, 

(3.11) b n C1+ C2A to =0.  

If these implied that C1 and C2 were zero, then the Codazzi equations would be 

superfluous. However, this is not the case, since (3.10) and (3.11) are clearly 

satisfied by 

C ~ = t o  A 4,, C 2 = b  ^ 4,, 

where 4> is any scalar-valued 1-form. (This solution is not possible in the 

pseudo-Riemannian case because of the relation that exists then between C1 and 
G.) 

It is, however, easy to show that only the Codazzi equation C1 = 0 and the 

Ricci equation need be satisfied when to is suitably non-degenerate. To define 
i i this, write the components of to as c o , i d x ,  and call to m a x i m a l  if the map 

R "2 ~ (t])7.;=~ ~ (to ~ t ~  =~ E R p 

has rank 2. This will clearly be the case for generic to and p _-> n 2. While this is 

possible for a general rigged immersion, i t  is not possible for an isometric 
i _ _  " embedding, for which oJ , j -  g'koJ,,k t with oJ~[kn = 0. We now have 
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where 

THEOREM 2. Suppose to, b, ~ and 0 are matrices of  1-forms, with entries to'~, 

b 7, ~ and 0 ~ (i = 1,. �9 n ; a, ~ = 1,. �9 p ; a = 1,. �9 n + p),  being regarded as 

tensors of the type indicated by the indices. Let  0 satisfy (3.2'): 

O = d O + f  A 0 - 0  A f, 

(o t - - t o  

f : =  b ~ ' 

and suppose that the Ricci equation and one Codazz i  equation are satisfied: 

K = 0; C~ = 0, 

where 

G C1) - O *  
C2 K : = 0  - - f A f - - d f .  

Then if to is maximal,  C2 = 0 = G and all the embedding equations of Theorem 1 

are satisfied. 

PROOF. (3.6) becomes, in this case, 

G A t o  = 0  

or, in components, 

(3.12) Gj ik , to  g,.) = 0 

(square brackets denoting antisymmetrization over indices of the same type). 

The maximality of to implies the existence of a tensor u~ t such that 
el i j t Bb v~ took = 8~8k. Multiplying (3.12) by va gives 

G~lk,a ~j = 0 

and so G = 0. 

Similarly (3.8) gives 

C2A to = 0  

which implies that (72 = 0, in the same way. 

4. The pseudo-Riemannian  case 

Suppose now that M, N are non-degenerate pseudo-Riemannian manifolds, 

with M isometrically embedded in N and E the normal bundle. In this case 
= ~ (E) r /~ (~  the metric on N), where rh~ = g ( E , E ) =  +-1,0 for pseudo- 

orthonormal E, and 7/~'r/y~ = 8~. Then ~ and B are related by 
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(4.1) 

(g the metric on M) or 

B 7 = gij~ ~ 1"~ 

B = ~q l i n g  

t rn m t 
g~,,w ,, uCoiki - C ~ w  ck Ig~,,, = O. 

C p A  e - r "  a ~<m> l x ~ ~.~r �9 m (,Yv)(ijk) = 0 

I A l~(pq~ 
II(e~T~(ijk) [3 p q - -  t3 p q = 6 v r i 3 • I • ,, r / 6 k I. 171 

Here pointed brackets denote the ordering of indices (i.e. (pq )  means pq or qp 

according as p < q or q < p) and any implied summation or universal quantifica- 

tion is over the range p < q, i < j < k etc.; square brackets denote antisymmetri- 

zation, and we have lowered indices with g. Capital indices P, O," - �9 will be used 

to abbreviate collections of indices of the form ~"~, while X, Y,. - - will be used 

for collections of the form (a',/) ( i j k ) .  

The matrix A with components A x has "n ' -p(n - 1) rows and {2np(n - 1). 

(n - 2)(p - 1) columns. [f its rank were equal to the number of rows ("maximal 

row-rank") then (4.3) would imply that Cp = 0, i.e. the Codazzi equations Cp = 0 

would be implied by the Gauss and Ricci equations (3.9). However,  the row-rank 

of A cannot be maximal (a point apparently overlooked in [1]) since its kernel 

certainly contains the p n - d i m e n s i o n a l  subspace spanned by the set {C : C~'<~ = 

6[~eqjH~, e ~ R", H E RP}. There could be further "h idden"  relations restricting 

the rank of A. We shall show, however, that for a large enough number of 

columns this is the only restriction. Explicitly: 

PROPOSITION. /f [(p - 1)/2]>=3n/2 (n >4) ,  or i f  p >= 11 a n d  n =4 ,  then for  

(w,,,~) in an  open dense  set  o f  all  such  w wi th  w,,~, = oa~om we h a v e  

(4.5) rank(A ) = { n p ( n  + 1)(n - 2) 

(where  [x] denotes  the largest  integer not  greater  than  x ) .  

(4.2) 

We shall write this as 

(4.3) 

where 

(4.4) 

and similarly C_~ = -~C,~g. 

Equations (3.10) and (3.11) then both become equations restricting Cz. It turns 

out that for large codimension p the most interesting is (3.11) which becomes 

7qco ' g ^ C, - ~qC~,g ^ r = 0 

or, in components, and setting C---C~ 
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REMARKS. The condition [(p - 1)/2] => 3n/2  is satisfied in the general case of a 

local isometric embedding (for which p -- �89 - 1)) when n => 8. For n = 4 the 

condition p _-> 1 is certainly necessary (otherwise there would be insufficient 

columns). For n = 5, 6, 7 computer  calculations indicate that it is sufficient to 

have [ ( p -  1)/2] _-> 5,5,4 respectively; in which case a general local isometric 

embedding would satisfy the condition when n _-> 6. In any case, the proposition 

is of interest in cases where a high codimension is required in order to secure a 

good ditterentiability [3]; but it is of no help if one is interested in algebraically 

special cases, for instance. 

PROOF. First note that, when a matrix depends algebraically on a number  of 

parameters  k j,- �9 kr then its rank has its maximum value on the complement  of 

the union of a finite number  (possibly zero) of algebraic varieties of dimension 

less than r. Thus if there is a point k in a neighbourhood of which the matrix has 

rank p, then p will be the generic rank of the matrix. We apply this principle to a 

sub-block of A in lhe following lemma. 

LEMMA. Let  A ' be the matrix with components  

(4.6) A " ~  Io~'jk~ = ~0mo1'8~8~1 

with 0 = 1,2,.  �9 s and  latin indices ranging from 1 to n >= k. I f  s >= 3n/2  (n > 4), 

or s >= 5 for n = 4, then for generic oJ satisfying o~,.o, = W,o,. the rank of  A '  is 
�89 - 1 ) -  n. 

PROOF OF LEMMA. We take first the case n > 4. 

Suppose s is the smallest integer satisfying the condition. Since 
A ,,,~) .1 ,, m o,jk>C~m~=O if C lies in the subspace spanned by {C:C<,q>= 

6 ~eqj, e ~ R" }, it is clear that rank (A')<-�89 - 1 ) - n .  Thus, from what was 

said at the start of the proof of the proposition, it is sufficient to find a set of oJ's 

for which equality holds. 

For clarity in what follows, we shall replace the label 0 by a pair (i]) ( i ~  j )  and 

write this pair first; (i]) will range over a set P of cardinality s. We then choose 

the components  of the matrix ~o<~j> to be 

(4.7) to<ij~t = ~,k~jt + ~,t~sk. 

The set P is taken as follows: 

For n = 2k, even, 

P = {(1,2), (2, 3 ) , . . . , ( n  - 1 ,  n ) , (n ,  1)(1, k + 1),(2~ k + 2 ) , . . . , ( k , 2 k ) } .  
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For n = 2k + 1, odd, 

P = {(1,2), . .  ",in - 1, n) ,(n,  1),(1, k + 1),(k,2k) ,(k  + 1,2k + 1)}. 

This ensures the following two properties: 

(4.8) ( i , i + l ) E P  and (n, 1)EP,  f o r i = l , - - - , n - 1 ;  

(4.9) for any ijk 3r distinct from i, fi k with (jr) ~ P. 

With the choice (4.7), A '  takes the form 

! ( p q )  
A ,, I<,n<,,,) = (&,-'Sit, + 6J,-&l,)~:6,ql . 

It is clear from this that, for a non-zero component  of A ' ,  we require either 

(m = i and {p, q,j} = {r, s, t}) or (m = j and {p, q, i} = {r, s, t}). Thus the non-zero 

elements of A '  can be labelled by the sets ((st), m, r), with r, s and t distinct, 

there being a correspondence between such sets and the non-zero elements of 

A'  defined by 

((st)m,r)~,A"~n[ = +1  m ( m r ) ( r s t )  - -  

the sign being given, by the product of the signatures of the permutat ions 

required to order (st) and (rst). 
Two distinct elements are in the same column of A '  if they have the same pairs 

(mr) and fist); i.e. if their index sets are (st, m, r) and (s'r', r, m) wit h {m, s ' ,  t'} = 

{r,s,t}. Since r ~ m  for ( rm)~P ,  this means ( r = s '  or r=r ' )  and (m = s  or 

m = t). The index sets can thus be written (st, s, r) and (rt, r, s). Sets of the form 

(st, re, r) with m fE{s,t} thus label elements in columns in which only that 

element is non-zero, while in the other columns there are exactly two non-zero 

elements. 

Let us reorder  the rows and columns of A ' ,  starting with those rows labelled 

by mist) with m, s, t all distinct. By our choice of P (4.9), for each of these we 

can find an r such that ( m r ) E  P, with m, r, s, t distinct, giving an isolated 

non-zero element in the column labelled by (mr) fist). Starting with these 

columns in the order corresponding to the rows reduces A'  to the form 

(:) A ' =  I 
I 
I 

where J is diagonal with entries - 1 ,  of rank ~ n ( n -  1)(n - 2 ) .  

Choose an index n and consider the following elements of A ' ,  here referred 
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by their index sets and shown along with their row- and column-labels (Fig. 1). 

There are no other entries in the submatrix K, defined by these rows and 

columns, since there are at most two elements in each column; and hence the 

rank is n - 2 .  Moreover,  the rows and columns constructed for different values 

of n are distinct. Thus we can group the rows and columns for n = 1,2,- �9 n so 

as to reduce A '  to the form /J 00it 0 I 
0 1 0 i I 

i I I 

o' ,o  ',oi 

(noting that this now covers all the rows). 

It follows from this form that 

rank A '  -< rank J + ~ rank K, 
u~l 

= � 8 9  + 1)(n - 2 ) =  �89 - 1 ) -  n. 

Since this is maximal, the lemma is proved for n > 4. 

The proof for n = 4 consists of a verification that the rank is maximal for the 

above choice of to, but with P = {(12), (2,3), (3,4), (13), (2,4)}. 

PROOF OF PROPOSITION (continued). Choose a general set of (~,,~,)(o~,,,, = 
t~,~) and let tor,~, = q~r,~i (no summation over a )  where the q~ are a set 

of parameters to be chosen later. Suppose [ ( p -  1)/2] = s. We then arrange 

the columns of A in groups, each group having fixed ( ay )  and varying i, j, k (cf. 

(4.5)). The groups will themselves be arranged in the order indicated along the 

top of Fig. 2, while the rows will be grouped into rows with the same/3 (cf. (4.5)), 

in order of increasing /3. Figure 2 then describes the non-zero blocks of A 

(columns labelled by ( ay )  = (r, 2s + 2) for r > s in the case when p is even are 

omitted). 

The rank is essentially determined by the parts of the matrix enclosed in boxes 

in Fig. 2. Each of these is of the form of the matrix A of the lemma and so has 

rank In (n + 1)(n - 2). If one imagines performing row operations to reduce A to 

echelon form, it is apparent that, providing ql "> q2 ~> �9 �9 �9 ~> qp, then each of these 

boxed sections will contribute to the rank of A. In this case r a n k ( A ) =  

� 8 9  - 1)(n - 2) as required. [] 
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The analogue of Theorem 2 for the pseudo-Riemannian case can now be 

written down, as follows. 

THEOREM 3. Suppose to, ~ and 0 are matrices of 1-forms with entries to~, ~ 

and 0~,. Define b7 = ~agijto~ where t I is a diagonal matrix with entries +- 1 and g 

is a non-degenerate pseudo-Riemannian metric on M. Suppose also that 

(to, b, ~, 0) satisfy (1) of Theorem 2; that (in the notation of Theorem 2) the Gauss 

and Ricci equations are satisfied: 

G =0,  K = 0 ;  

that the components b~i~ satisfy b~tijl -~ 0; and that at each point x of M C lies in a 

subspace of tensors transverse to the space Vx generated by matrices of 2-forms with 

entries 
m _ _  m 

C ~ - H ~ d x  ^ 4~ 

(H ~ R ~, dp a 1-form on M). If  [ ~  - 1)/2] > 3n/2 (n > 4), or i fp  > 11 and n = 4, 

then ]:or generic to the Codazzi equation C = 0 is also satisfied. 

PROOF. We need merely remark that Vx has already been identified with the 

kernel of A by the proposition, and CA = 0 by (4.3). It follows that C = 0. [] 

Finally, we remark that equation (3.10) can be used further to restrict the 

avoided subspace Vx. However, the restriction depends on to and (for large/3) is 

not such as to make C = 0 an inevitable consequence of (3.10) and (3.1l). 

5. Applications 

The motivation for developing this formalism and establishing the dependency 

results (Theorems 2 and 3) has been the desire to approach general immersion 

results through a direct solution of the Gauss-Codazzi-Ricci equations. Previ- 

ously it has been customary, in the pseudo-Riemannian case, to use these 

equations mainly for the explicit calculation of embeddings of algebraically 

special spaces, relying on direct manipulation of the equations for the metric in 

the general case. It is hoped that the proposed alternative approach will allow 

one to prove the existence of immersions with an optimum differentiability for a 

given differentiability of the curvature of the immersed manifold (where, as we 

have already noted in relation to [3], a larger codimension is required than is 

needed if differentiability conditions are relaxed). This should in turn shed light 

on the difficult question of how the differentiability of the connection is 

determined by that of the curvature, where the author has so far obtained only 

partial results [2]. 
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(a'y): 

1 

2 

s + ]  

s+2  

s + 3  

2 s + l  

(1,2). �9 �9 (1,s + 1) 

- -  0 ) 1  

- -  0 )  1 

. . . .  " 

(if p even)/ 

Fig. 2. The matrix A. 

I 
(2, 3)--- (2,s + 2) i 

f 

I 
t 
I 
I 
I 

I 
I 

I 
-,o2 o I 

I 

I 
- 0 ) 2  

I I 
I I 

I 
I i 
I I 
I I 
~ _ _  _ _ _ q _  
I i 
I I 
I I 
i I 

(s + l , s  +2)---(s + 1,2s + 1) 11 O,s +2)(s +2,s +3)l(s +2, s +4)---(s +2,2s + l )  

01++2 �9 " ' 0)Z~+l I 

- 0)++1 

0 - 0)++1 

- 0)s+l 

fOl+~ 

_0), o,++ 0),+, 0)2.+, I 

-- o)1+ 2 

-- 0)++2 

Row 

u + l ( u u + l )  
u + 2 ( u u + 2 )  
u + 3 ( u u + 3 )  

u + n - 2 ( u u + u + n - 2 )  
u + u - l ( u u + n - l )  

Column : 

( u + l u + 2 )  ( u n + l n + 2 )  ( u + 2 n + 3 )  ( u u + 2 n + 3 )  . . .  ( u + n - 2 u + n - l ) ( u u + n - 2 u + n - 1 )  

( u + l  u, u + l , u + 2 )  
( u + 2 u ,  u+2,  u + l )  ( u+2u ,  u+2,  u+3)  

( u + 3 u ,  u+3,  u + 2 )  .+. 

( u + n - 2 u ,  u + n - 2 ,  u + n - 1 )  
( u + n - l u ,  u + n - l , u + n - 2 )  

Fig. 1. The matrix K.. Addit ion of indices is modulo n. 
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1[ 1] (if p is even) 
(1,s+3)(2, s+3)(s+3, s+4)...(s+3,2s+l) "" (1,2s+l)(2,2s+l)...(s,2s+l) (1,2s+2)...(s,2s+2) 

O)s+3 

~o,+3 

I . . . . . . . . . . . .  

- -  OJ I O) 2 (0#+ 4 (-02s + ! [ 
I 

I 8 D O 

- -  ~Os+ 3 

O)2s+  1 

r  

t O 2 m + l  

OJ2J§ 

I o, o~ . . . .  o,1 

i - o l . . . - o . [  

361 
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As an example, we give a simple local thorem for rigged immersions, using the 

dependence relation (3.6) that forms the main part of Theorem 2. Though this 

uses only a small part of the results obtained, it illustrates the potentialities of the 

approach. As the result is only intended as an illustration, we omit some of the 

details in the proof. 

THEOREM 4. Let there be given on R" a differentiable matrix of connection 

forms to having a H61der continuous (exponent 0 < t~ < 1) matrix of curvature 

forms. Then the equations (2.9) (Gauss -Codazz i -R icc i )  with H = 0 admit a 

solution for p = n 2 in a small enough neighbourhood of the origin, with ~ ,  B and 

or HoMer continuous (exponent a ). 

COROLLARY. Under the assumption of the theorem, there exists a class C ~'~ 

immersion of a neighbourhood of the origin into R "+p, and a C L~ rigging, which 

induce the connection to. 

PROOF OF THEOREM. We denote the norms corresponding to the classes C a 
and 1,a C , in a domain D with compact closure, by II IIo and II IIg respectively. 

When D is a ball of radius R centre the origin the subscript D will be omitted. 

Our main tool is provided by the following lemmas. 

LEMMA 1. Let D be an open domain in R", star-shaped from all points in a 

ball of radius a centre the origin. Then there exists a linear map I, from p-forms on 

D to ( p - 1 )  forms on D (p = 1,2 , ' "  . , n )  satisfying 

(5.1) dI.qb = q~ - I.d~b, 

(5.2) llIo4,ll~o <= cII4,llo, [lIo4,[Io <- RCl[4,11o, 

where C depends on R, a and p with limsupt3~o C(flR, fla, p)  finite. 

PROOF. See [2], w The assertion concerning C follows from an obvious 

scaling argument on noting that if f : x ~/3x then f*/~b =/~/~f*~b. 

LEMMA 2. Let D be as above and contained in a ball of radius R and centre 

the origin. Let there be given a connection on the bundle R q • D---> D with 

connection 1-forms to and curvature 2-forms H (both matrix-valued); and let 

(5.3) Ilto ll,, =< min(1/a, 1/[C(R + a)]) 

where C is the constant of Lemma 1. Then there exists an operator J~ taking 

Rq-valued p-forms to Rq-valued (p - 1)-forms satisfying 

(5.4) dJ,6 = ~b - J, d6 + J~ @L~b, 
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(5.5) II Ja0U 11~ ~ c '  It 6 Iio, 

with C '  h a v i n g  the properties o f  C. 

PROOF. Define 

IIJ~6 II ~ R C ' I I ~  liD, 

r = 0  

which converges from (5.2) and (5.3). Then clearly 

L (1 + ~oL)4, = I~b (5.6) 

and 

(5.7) 

Differentiating (5.7) 

whence, from (5.1), 

(1 + L,o)L4, = L4,. 

dJ~b + dlaooJ~c~ = d l J~  

dJock - L&oJ:b + o,J:k = - Ld,b + ok, 

i.e. 

(5.8) dJ~c~ = 4, - I~d(c~ i o~JJp ). 

Covariantly differentiating again 

|  = d2Ldp = &b - dLd(~b - oJJ~6 ) -  oJLd(qb - ~oJ~qb ) 

= d6 - (1 + o~L)d(6 - oJJ~ff) 

(using (5.1) again). 
Operating with J~ and using (5.6) then gives 

J~ OJ~ck = L d &  - I , d ( c k  - toJ~ck ) 

= L d &  + dYaqb - d~ 

(from (5.8)). Rearranging then gives (5.4). 

The proof of (5.5) is a direct calculation applying (5.2) to the definition of Ja 

and performing the summations. 

PROOF OF THEOREM (continued). We shall solve (2.8) with O = 0  by an 

iterative procedure (i.e. using what is essentially a contraction-mapping argu- 

ment). From now on D is the R-ball at the origin, a = R / 2  and subscripts " a "  
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and " D "  will be omitted. At the n th stage of the iteration the variables are 

with the initial values 

o 

: = 0 ,  o ' :  =0 ,  
0 

m . i rn (5.9) f~-~),+,k. = - 6k6j K 

(i, j = 1," �9 ", n ; K a constant determined later). 

These correspond to the canonical immersion of flat R" in R . . . .  with a 

non-trivial rigging. 

Iteration is determined by 

i" = F + a  a i ' = - e s x  (5.10) 

where 

. 0 g )  

and X is defined by (3.3) with ~)=  0. 

Since P commutes with the action of J, (3.3), (5.10) and (5.4) give, by direct 

substitutioh, 
k ~ - 1  n - I  n - 1  ~ - 1  n - I  

= X - P X  + ( P J F ) A  X + P J O * J X  
n - 1  n - I  n - 1  n - I  

- F A P J X  + ( P J X  )A P J X  
(5.11) 

so that 
n - 1  n - 1  

(5,11)' PX = P( (PJF  )A X )+ similar terms. 

This last equation very nearly establishes the contractive property of the 
~ - 1  n - 3  

iteration, except that on the right-hand side there appears X instead of P X.  We 

circumvent this by using the dependency relation (3.7) and the proof of Theorem 

2 to relate the Gauss-equation error (the part of X not appearing in PX) to the 

rest of X. 

Suppose that 

Ilfi-hll< tr 
so that 1~ is maximal, (This holds for n = 0 m cf. (5,9); if we take it to be true for 

n < N then after the contractive property has been established it wil! become 
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clear that we can take N = ~ provided K is large enough.) Thus, proceeding as 

in the proof of Theorem 2 we obtain 

(G A tO)P = (C1 A Or + ~ A K - d C l ) p  

(where v, the inverse of a~ as defined in Theorem 2, is unique for p = n 2) leading 

to 
( - )  

(5.12) II G II =< (K-' II P~f II 1 + 11PX II) x const. 

the constant depending on/~'. 

We next evaluate the first term on the r.h.s, by applying (5.5) to (5.11)', 

differentiated, obtaining an inequality of the form 
( n )  �9 n - I  n - 1  n - I  n - 1  

II P x  tl 1 ~ const. • R (11 F II II X II 1 3i- II F II 111 x II) 
n - 1  n - I  

(5.13) + const. • II X It(IIFII+IIHII+II X II) 

(where the constants, derived from C' in (5.5), are bounded as R ~ 0 with R / a  

fixed). 

Moreover, from (5.10) we have 

ii/~1) . . . . . .  1~(11F II1+11X II) • const. 

so that 

o) 
11t~111_- <const .  x ~ IIXII+IIFII ~ . 

We shall carry out the iteration with the summation and II/~ II bounded; thus II/~ II 1 
will be bounded and (5.13) can be written 

n n - i  n - i  

II fx  II 1 ~ coast, x (g  II x II 1 + II x II). 

Using this, (5.12) becomes 

(5.14) II G II~ coast. • ( r  'g  II X II '+r  111 X II+ II). 

A similar argument applied to (5.11) shows that II ~ [I 1 is bounded, in which 

case (5.14) becomes 

(5.15) It x; II--< const. • (g-'l l  X I1+ R K - I  + Ilfxll). 

Inserting this in (5.11) gives 

IIP~r ~ const, x {R (K-11[ "]t~ I1+ R K  -1 + liege II) 
n - 1  n - 2  n - 1  

+ R IIOII IIPX I1+ n(g- ' l l  X II+RK-'+IIPX B)} 
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and then inserting this in (5.15) gives, finally, 

k l l  . . . . . .  II =< const, x (K-1 + R)(II X I1+11X II) 

for small enough R. 
Thus for small enough R and K -1 we can prove by induction that Ilxll--,0, 

with the restrictions on II 1~ - 1~ II and E II-~ II maintained. [] 
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